
A Note on Small Universal Spiking Neural
P Systems

Linqiang Pan?, Xiangxiang Zeng

Key Laboratory of Image Processing and Intelligent Control
Department of Control Science and Engineering
Huazhong University of Science and Technology
Wuhan 430074, Hubei, People’s Republic of China
lqpan@mail.hust.edu.cn, xzeng@foxmail.com

Summary. In the “standard” way of simulating register machines by spiking neural
P systems (in short, SN P systems), one neuron is associated with each instruction of
register machine that we want to simulate. In this note, a new way is introduced for
simulating register machines by SN P systems, where only one neuron is used for all
instructions of a register machine; in this way, we can use less neurons to construct
universal SN P systems. Specifically, a universal system with extended rules (without
delay) having 12 neurons is constructed.

1 Introduction

The spiking neural P systems (in short, SN P systems) were introduced in [1], and
then investigated in a large number of papers. We refer to the respective chapter
of [6] for general information in this area, and to the membrane computing web
site from [10] for details.

Informally, an SN P system consists of a set of neurons placed in the nodes of
a directed graph, called the synapse graph. The content of each neuron consists
of a number of copies of a single object type, called the spike. The rules assigned
to neurons allow a neuron to send information to other neurons in the form of
electrical impulses (also called spikes). An output can be defined in the form of
the spike train produced by a specified output neuron.

Looking for small universal computing devices of various types is a well in-
vestigated issue in computer science, see, e.g. [2, 7], and the references therein.
Recently, this issue was considered also in the case of SN P systems [4], where a
universal SN P system was obtained using 84 neurons for standard rules and 49
neurons for extended rules in the case of computing functions; used as generators
of sets of numbers, a universal system with standard rules (resp. extended rules)

? Corresponding author. Tel.: +86-27-87556070. Fax: +86-27-87543130.

A Note on Small Universal SN P Systems 465

having 76 neurons (resp. 50 neurons) was found. An improvement is presented in
[9] in the sense that less neurons are used to construct a universal SN P system.
Specifically, in the computing function mode, 68 neurons (resp. 43 neurons) are
used to construct a universal SN P system with standard rules (resp. extended
rules); in the number generating mode, universal SN P systems are obtained with
64 neurons (resp. 43 neurons) using standard rules (resp. extended rules). All of
the above universal SN P systems are obtained by simulating a register machine
from [2], where a neuron is associated with each register of the register machine
that we want to simulate; a neuron is associated with each instruction of the regis-
ter machine; some auxiliary neurons are also used. If in the register machine that
we want to simulate, there are m instructions and n registers, then the number of
neurons in the universal SN P system obtained by this way is not less than m+n.

In this note, we present a new approach to a simulate register machine, where
one neuron (denoted by σstate) is used for all instructions of the register machine.
The function of neuron σstate is similar with “the finite set of states” in a Turing
machine. In this way, universal SN P systems with less neurons can be obtained.
Specifically, a universal SN P system is constructed with extended rules (without
delay) having 12 neurons.

The rest of this paper is organized as follows. In the next section, we intro-
duce some necessary prerequisites. In Section 3, a small universal SN P system is
constructed. Conclusions and remarks are presented in Section 4.

2 Prerequisites

We assume the reader to be familiar with (basic elements of) language theory [8],
as well as basic membrane computing [5] (for more updated information about
membrane computing, please refer to [10]), hence we directly introduce some basic
notions and notations including register machines and SN P systems.

For an alphabet V , let V ∗ denotes the set of all finite strings over V , with the
empty string denoted by λ. The set of all nonempty strings over V is denoted by
V +. When V = {a} is a singleton, then we write a∗ and a+ instead of {a}∗, {a}+.

A regular expression over an alphabet V is defined as follows: (i) λ and each
a ∈ V is a regular expression, (ii) if E1, E2 are regular expressions over V , then
(E1)(E2), (E1)∪ (E2), and (E1)+ are regular expressions over V , and (iii) nothing
else is a regular expression over V . With each expression E we associate a language
L(E), defined in the following way: (i) L(λ) = {λ} and L(a) = {a}, for all a ∈ V ,
(ii) L((E1)∪(E2)) = L(E1)∪L(E2), L((E1)(E2)) = L(E1)L(E2), and L((E1)+) =
L(E+

1), for all regular expressions E1, E2 over V . Non-necessary parentheses are
omitted, and also (E)+ ∪ {λ} can be written as E∗.

2.1 Register Machines

A register machine is a construct M = (m,H, l0, lh, I), where m is the number of
registers, H is the set of instruction labels, l0 is the start label (labeling an ADD

466 L. Pan, X. Zeng

instruction), lh is the halt label (assigned to instruction HALT), and I is the set of
instructions; each label from H labels only one instruction from I, thus precisely
identifying it. The instructions are of the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk non-deterministically chosen),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers being empty (i.e., storing the number zero), we apply
the instruction with label l0 and we continue to apply instructions as indicated
by the labels (and made possible by the contents of registers); if we reach the
halt instruction, then the number n present in specified register r0 at that time
is said to be generated by M . If the computation does not halt, then no number
is generated. It is known (see, e.g., [3]) that register machines generate all sets
of numbers which are Turing computable, even using register machines with only
three registers as well as registers 1 and 2 being empty whenever the register
machine halts, where we assume that the three registers are labeled with 0, 1, 2.

Convention: when evaluating or comparing the power of two number gener-
ating/accepting devices, number zero is ignored.

2.2 Spiking Neural P Systems

We briefly recall the basic notions concerning spiking neural P systems (in short,
SN P systems). For more details on such kind of systems, please refer to [1].

A spiking neural P system of degree m ≥ 1 is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → ap; d, where E is a regular expression over a, and c ≥ 1, d ≥ 0,
p ≥ 1, with the restriction c ≥ p;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → ap; d
of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . ,m} with i 6= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m
(synapses between neurons);

4. in, out ∈ {1, 2, . . . , m} indicates the input and the output neurons, respectively.

A Note on Small Universal SN P Systems 467

If we always have p = 1 for all rules of the form E/ac → ap; d, then the rules
are said to be of the standard type, else they are called by extended rules.

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the rule
E/ac → ap; d ∈ Ri can be applied. This means consuming (removing) c spikes
(thus only k− c remain in σi), the neuron is fired, and it produces p spikes after d
time units (as usual in membrane computing, a global clock is assumed, marking
the time for the whole system, hence the functioning of the system is synchronized).
If d = 0, then these spikes are emitted immediately, if d = 1, then these spikes are
emitted in the next step, etc. If the rule is used in step t and d ≥ 1, then in steps t,
t + 1, . . . , t + d− 1 the neuron is closed (this corresponds to the refractory period
from neurobiology), so that it cannot receive new spikes (if a neuron has a synapse
to a closed neuron and tries to send several spikes along it, then these particular
spikes are lost). In the step t + d, the neuron spikes and becomes again open, so
that it can receive spikes (which can be used starting with the step t+d+1, when
the neuron can again apply rules).

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d has E = ac, then we will write it in the simplified form
ac → a; d.

If a rule E/ac → a; d has d = 0, then we will write it in the simplified form
E/ac → a.

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1/ac1 → ap1 ; d1 and E2/ac2 → ap2 ; d2, can
have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule is
applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, at most one
in each step, but neurons function in parallel with each other. It is important to
notice that the applicability of a rule is established based on the total number of
spikes contained in the neuron.

The initial configuration of the system is described by the numbers
n1, n2, . . . , nm, of spikes present in each neuron, with all neurons being open. Dur-
ing the computation, a configuration of the system is described by both the number
of spikes present in each neuron and by the state of the neuron, more precisely, by
the number of steps to count down until it becomes open (this number is zero if the
neuron is already open). Thus, 〈r1/t1, . . . , rm/tm〉 is the configuration where neu-
ron σi contains ri ≥ 0 spikes and it will be open after ti ≥ 0 steps, i = 1, 2, . . . ,m;
with this notation, the initial configuration is C0 = 〈n1/0, . . . , nm/0〉.

Using the rules as described above, one can define transitions among configu-
rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where all neurons

468 L. Pan, X. Zeng

are open and no rule can be used. In this note, we use SN P systems as number
generating devices, we start from the initial configuration and we define the result
of a computation as the number of steps between the first two spikes sent out by
the output neuron.

In the next section, as usual, an SN P system is represented graphically, which
may be easier to understand than in a symbolic way. We give an oval with rules
inside to represent a neuron, and directed graph to represent the structure of SN
P system: the neurons are placed in the nodes of a directed graph and the directed
edges represent the synapses; the input neuron has an incoming arrow and the
output neuron has an outgoing arrow, suggesting their communication with the
environment.

3 A Small Universal SN P System

In this section we shall give a small universal SN P system (where extended rules,
producing more than one spikes at a time, are used).

Let Mu = (3,H, l0, lm−2, I) be a universal register machine with 3 registers
labeled by 0, 1, 2, where m ≥ 2, H = {l0, l1, l2, . . . , lm−2} is the set of instruction
labels, l0 is the start label (labeling an ADD instruction) and lm−2 is the halt label
(assigned to instruction HALT), I is the set of instructions.

We modify the universal register machine Mu such that the register where
we place the result is not subject to subtraction operations in the new register
machine. To this aim, we add a further register 3 to output the result, and replace
the halt instruction lm−2 of Mu with the following instructions:

lm−2 : (SUB(0), lm−1, lm), lm−1 : (ADD(3), lm−2), lm : HALT.

The new register machine M ′
u has 4 registers, m + 1 instructions (m ADD and

SUB instructions, and one halt instruction). In the following proof of Theorem 1,
a small universal SN P system is constructed by simulating the register machine
M ′

u.

Theorem 1. There is a universal SN P system with extended rules (without delay)
having 12 neurons.

Proof. We shall present an SN P system Π with 12 neurons to simulate register
machine M ′

u. The structure of system Π is given in Figure 1, where spiking rules
are omitted, which will be specified below. In system Π, neuron σstate contains all
spiking rules associated with all instructions of M ′

u (it is a point different with the
“standard” way of simulating register machines by SN P systems, where one neuron
is associated with each instruction of register machine that we want to simulate);
neurons σi and σai (i = 0, 1, 2, 3) are associated with registers 0, 1, 2, 3; neuron
σout is used to output the result of computation; auxiliary neurons σb1 , σb2 are
used to send a fixed number of spikes to neuron σstate at each step of computation.

A Note on Small Universal SN P Systems 469

We point out that each neuron σi (i = 0, 1, 2) has a synapse (i, state) going to
neuron σstate except for neuron σ3 (as you will see below, the difference originates
from the fact that register 3 is not subject to substraction instructions); however,
neuron σ3 has a synapse (3, b2) going to neuron σb2 , which is used to stop the work
of neurons σb1 and σb2 when the computation of system Π halts.

state
a1 1

a2 2

a3 out3

a0 0

a2

aT4

b2b1 aT aT

Fig. 1. The structure of system Π with the initial numbers of spikes

In system Π, each neuron is assigned with a set of rules, see Table 1, where
P (i) = 4(i+1), for i = 0, 1, 2, . . . , m, and T = 4(m+1)+1. Neurons σi (i = 0, 1, 2)
have the same set of rules except of neuron σ3, the difference originates from
the fact neuron σ3 is not subject to subtraction instruction and it is related to
output the result of computation. In neuron σstate, there are m + 1 groups of
rules R0, R1, . . . , Rm, specifically, for each ADD instruction li : (ADD(r), lj , lk), the
set of rules Ri = {aP (i)(aT)+/aP (i)+T−P (j) → a2r+3, aP (i)(aT)+/aP (i)+T−P (k) →
a2r+3} is associated; for each SUB instruction li : (SUB(r), lj , lk), the set
of rules Ri = {aP (i)(aT)+/aT+3 → a2r+2, aP (i)−1(aT)+/aP (i)−1+T−P (j) →
a, aP (i)−2(aT)+/aP (i)−2+T−P (k) → a} is associated; for instruction lm : HALT,
Rm = {aP (m)(aT)+/aP (m) → a8} is associated. If the number of spikes in neuron
σstate is of the form P (i) + sT for some s ≥ 1 (that is, if the number of spikes
is n, then n ≡ P (i) (mod T); the value of multiplicity of T does not matter with
the restriction that it should be greater than 0), then system Π starts to simulate
instruction li. In particular, in the initial configuration of M ′

u, neuron σstate has
T + 4 spikes, which is the form T + 4 = P (0) + T , system Π starts to simulate
the initial instruction l0 of M ′

u; with P (m) + sT = 4(m + 1) + sT spikes in σstate,
system Π starts to output the result of computation; if the number of spikes in
σstate is of the form sT , then no rule in σstate is enabled, which happens after the

470 L. Pan, X. Zeng

halt instruction is reached. That is why we use the label state for this neuron, and
the function of this neuron is somewhat similar with “the finite set of states” in
Turing machine.

Table 1. The rules associated with neurons in system Π

neurons associated rules

σb1 , σb2 aT → aT

σi, i = 0, 1, 2 a → a, a(a3)+/a4 → a2

σ3 a → a, a(a3)+/a3 → a3

σai , i = 0, 1, 2, 3 a2i+2 → a, a2i+3 → a3, a → λ,
a2j+2 → λ, a2j+3 → λ, j ∈ {0, 1, 2, 3} − {i}

σout a → a, a3 → λ, a5 → a

σstate Rstate = R0 ∪R1 ∪ · · · ∪Rm, where:

Ri = {aP (i)(aT)+/aP (i)+T−P (j) → a2r+3,

aP (i)(aT)+/aP (i)+T−P (k) → a2r+3},
for instruction li : (ADD(r), lj , lk);

Ri = {aP (i)(aT)+/aT+3 → a2r+2, aP (i)−1(aT)+/aP (i)−1+T−P (j) → a,

aP (i)−2(aT)+/aP (i)−2+T−P (k) → a},
for instruction li : (SUB(r), lj , lk);

Rm = {aP (m)(aT)+/aP (m) → a8},
for instruction lm : HALT

Initially, all neurons have no spike, with exception that each of neurons σb1 , σb2

contains T spikes, neuron σstate contains P (0)+T = 4+T spikes, and neuron σout

contains 2 spikes. As you will see, during the computation of M ′
u, the contents

of registers r, 0 ≤ r ≤ 3 are encoded by the number of spikes from neuron r in
the following way: if the register r holds the number n ≥ 0, then the associated
neuron σr will contain 3n spikes; the increase (resp. decrease) of the number stored
in register r is simulated by adding (resp. removing) three spikes.

With T spikes inside, neurons σb1 and σb2 fire by the rule aT → aT , sending
T spikes to each other; in this way, from step 1 until system Π starting to output
the result of computation (that is, until a step when neuron σ3 fires), at each step,
neuron σb2 will send T spikes to σstate.

In what follows, we check the simulation of register machine M ′
u by system

Π, by decomposing system Π into three modules (i.e., modules ADD, SUB, and
OUTPUT), and checking the work of each module.

Module ADD (Figure 2) – simulating an ADD instruction li : (ADD(r), lj , lk)
The initial instruction of M ′

u, the one with label l0, is an ADD instruction.
Assume that we are in a step when we have to simulate an ADD instruction
li : (ADD(r), lj , lk), with the number of spikes being the form P (i) + sT (for some
s ≥ 1) in neuron σstate (in the initial configuration, neuron σstate contains P (0)+T
spikes, and the simulation of the initial instruction with label l0 is triggered). The

A Note on Small Universal SN P Systems 471

state
a P iaT /a P iT−P ja2 r3

a2 r2 a a r

a2r3 a3

a2 f 2 , f ∈{0,1,2,3}−{r }
a2 f 3 , f ∈{0,1, 2,3}−{r }

a a3 /a4 a2
r

a a

a

R0 ,⋯, Ri−1 , Ri1 ,⋯, Rm

a P iaT /a P iT−P k a2 r3
Ri:

Fig. 2. Module ADD simulating li : (ADD(r), lj , lk)

rules aP (i)(aT)+/aP (i)+T−P (j) → a2r+3 and aP (i)(aT)+/aP (i)+T−P (k) → a2r+3 are
enabled, non-deterministically choosing one of them to be applied.

If aP (i)(aT)+/aP (i)+T−P (j) → a2r+3 is applied, then neuron σstate fires, sending
out 2r + 3 spikes to neurons σai (i = 0, 1, 2, 3). Neuron σar sends 3 spikes to
neuron σr by rule a2r+3 → a3. In neurons σat (t ∈ {0, 1, 2, 3} − {r}), these 2r + 3
spikes are forgotten by rule a2r+3 → λ. Therefore, neuron σr increases its number
of spikes by 3, and does not fire, which simulates the increase of the number
stored in register r by 1. After consuming P (i) + T − P (j) spikes by the rule
aP (i)(aT)+/aP (i)+T−P (j) → a2r+3, the number of spikes in neuron σstate is of the
form P (j) + sT (for some s ≥ 1) (recalling that neuron σstate receives T spikes
from neuron σb2 at each step), hence system Π starts to simulate an instruction
with label lj .

Similarly, if aP (i)(aT)+/aP (i)+T−P (k) → a2r+3 is applied, then neuron σr in-
creases its number of spikes by 3, and the number of spikes in neuron σstate is
of the form P (k) + sT (for some s ≥ 1). This implies that the number stored in
register r is increased by 1, and system Π starts to simulate an instruction with
label lk.

The simulation of the ADD instruction is correct: we have increased the number
of spikes in neuron σr by three, and we have passed to the simulation of one of
the instructions lj and lk non-deterministically.

Remark: (1) The auxiliary neurons σb1 and σb2 are necessary for the function
of system Π. They send T spikes to neuron σstate at each step, which ensures that
the number of spikes in neuron σstate not less than 0.

(2) In the simulation of an ADD instruction, when neuron σstate fires, it sends
2r + 3 spikes to all neurons σai (i = 0, 1, 2, 3). Checking the rules in neurons σai

(i = 0, 1, 2, 3) (listed in Table 1), we can find that in neuron σar only rule a2r+3 → a

472 L. Pan, X. Zeng

is enabled and applied, sending three spikes to neuron σr; in neuron σat with t 6= r,
only rule a2r+3 → λ is enabled and applied, these 2r + 3 spikes are forgotten, and
neuron σt, t 6= r, receives no spike. In general, there is a bijection relation: neuron
σr receives 3 spikes if and only if neuron σstate sends out 2r + 3 spikes, where
r = 0, 1, 2, 3. So, the neurons σai (i = 0, 1, 2, 3) work like a “sieve” such that only
the register that the ADD instruction acts on can increase its number by 1.

(3) As you will see below, when a SUB instruction that acts on register r is
simulated, neuron σstate sends out 2r + 2 spikes. In this case, neurons σai (i =
0, 1, 2, 3) also work like a “sieve”, but with different bijection relation: neuron
σr receives 1 spike if and only if neuron σstate sends out 2r + 2 spikes, where
r = 0, 1, 2, 3.

Module SUB (Figure 3) – simulating a SUB instruction li : (SUB(r), lj , lk).

state a P iaT /aT3 a2 r2

a2 r2 a a r

a2 r3 a3

a2 f 2 , f ∈{0,1,2,3}−{r }
a2 f 3 , f ∈{0,1,2,3}−{r }

a a3 /a4 a2
r

a a

a

a P i−2aT /aP i − 2T−P k a

a P i−1aT /a P i−1T−P j a

R0 ,⋯, Ri−1 , Ri1 ,⋯, Rm

Ri:

Fig. 3. module SUB simulating li : (SUB(r), lj , lk)

The execution of instruction li : (SUB(r), lj , lk) is simulated in Π in the following
way. With the number of spikes in neurons σstate having the form P (i) + sT (for
some s ≥ 1), rule aP (i)(aT)+/aT+3 → a2r+2 is enabled and applied, sending out
2r + 2 spikes; we suppose it is at step t. At step t + 1, neuron σar spikes by the
rule a2r+2 → a, sending one spike to neuron σr; these 2r + 2 spikes in neuron σat ,
t 6= r, are forgotten by the rule a2r+2 → λ (that is, the “sieve” function of neurons
σai , i = 0, 1, 2, 3, works again). For the number of spikes in neuron σr at step t,
we consider the following two cases: (1) neuron σr contains at least three spikes
(that is, register r is not empty); (2) neuron σr contains no spike (that is, register
r is empty).

A Note on Small Universal SN P Systems 473

(1) If the number of spikes in neuron σr at step t is 3n with n > 0, then receiving
one spike from neuron σar

at step t+1; neuron σr has 3n+1 spikes at step t+2,
and rule a(a3)+/a4 → a2 is enabled and applied, consuming 4 spikes, sending
2 spike to neuron σstate. In this way, the number of spikes in neuron σr is
3(n− 1), simulating the number stored in register r is decreased by one. After
receiving these 2 spikes, the number of spikes in neuron σstate is of the from
P (i) − 1 + sT (for some s ≥ 1), so rule aP (i)−1(aT)+/aP (i)+T−1−P (j) → a
can be applied. Consuming P (i) − 1 + T − P (j) at step t + 3 by rule
aP (i)−1(aT)+/aP (i)+T−1−P (j) → a, the number of spikes in neuron σstate is
of the from P (j) + sT (for some s ≥ 1), which means that the next simulated
instruction will be lj . Note that this one spike emitted by neuron σstate will
be immediately forgotten by all neurons σa0 , . . . , σa3 at the next step because
of the rule a → λ in these neurons.

(2) If the number of spikes in neuron σr at step t is 0, then at step t + 2, neuron
σr contains one spike (received from neuron σar

at step t + 1), and the rule
a → a is applied, consuming the single spike present in neuron σr and sending
one spike to neuron σstate. Neuron σstate contains P (i) − 2 + sT (for some
s ≥ 1) spikes at step t + 3, rule aP (i)−2(aT)+/aP (i)+T−2−P (k) → a is enabled
and applied, consuming P (i)−2+T −P (k) spikes. So, the number of spikes in
neuron σstate is of the from P (k) + sT (for some s ≥ 1), and system Π starts
to simulate the instruction lk.

The simulation of the SUB instruction is correct: starting from the simulation
of instruction li, we passed to simulate the instruction lj if the register was non-
empty and decreased by one, and to simulate instruction lk if the register is empty.

Remark: In the set of rules Ri associated with a SUB instruction li, the regular
expressions have numbers P (i), P (i)−1, P (i)−2, P (i)−3. Because P (i) = 4(i+1)
for each instruction li, which implies that {P (i1), P (i1) − 1, P (i1) − 2, P (i1) −
3}∩{P (i2), P (i2)− 1, P (i2)− 2, P (i2)− 3} = ∅, for i1 6= i2, the simulation of SUB
instructions do not interfere with each other. On the other hand, in the set of rules
Ri associated with an ADD instruction li, the regular expressions have number
P (i), it is not difficult to see that the simulations of an ADD instruction and a
SUB instruction do not interfere with each other too. That is why we take P (i) as
a multiplicity of number 4.

Module OUTPUT (Figure 4) – outputting the result of computation.
Assume now that the computation in M ′

u halts, which means that the halt
instruction lm is reached. For system Π, this means that neuron σstate contains
P (m)+sT spikes (for some s ≥ 1). At that moment, neuron σ3 contains 3n spikes,
for n being the content of register 3 of M ′

u. Having P (m)+sT spikes inside, neuron
σstate gets fired and emits 8 spikes by the rule aP (m)(aT)+/aP (m) → a8. After that,
the number of spikes in neuron σstate is of the form sT (for some s ≥ 1), no rule
can be applied anymore in neuron σstate.

At the next step, neurons σa0 , σa1 , σa2 forget these 8 spikes received from
σstate by the rule a8 → λ; only neuron σa3 sends one spike to neuron σ3 by the

474 L. Pan, X. Zeng

a8 a

state

a3

a9a3

a2 f 2 f =0,1,2
a2 f 3 f =0,1,2

Rm: aP maT /a Pm a8

a a

3

a a3 /a3 a3
a2

out

a

a5 a
a3
a a

aT aT

b2

R0 ,⋯, Rm−1

Fig. 4. Module OUTPUT

rule a8 → a. In this way, neuron σ3 has 3n+1 spikes, hence the rule a(a3)+/a3 → a3

can be applied, sending three spikes to neuron σout. With five spikes inside (three
spikes were received from neuron σ3; two spikes were contained from the initial
configuration), neuron σout fires by the rule a5 → a, which is the first spike sent
out by system Π to the environment. Let t be the moment when neuron σout fires.

When neuron σ3 spikes at step t − 1, neuron σb2 also receives 3 spikes from
neuron σ3, which gets “over flooded” and is blocked. So, neurons σb1 and σb2 stop
their works.

Note that at step t, neuron σ3 contains 3(n− 1) + 1 spikes (three spikes were
already consumed at step t − 1). From step t on, at each step, three spikes are
consumed in neuron σ3 by the rule a(a3)+/a3 → a3, sending 3 spikes to neuron
σout; these three spikes in neuron σout are forgotten by the rule a3 → λ. So, at
step t + (n− 1), neuron σ3 contains one spike, and the rule a → a is enabled and
applied, sending one spike to neuron σout. With one spike inside, neuron σout fires
for the second (and last) time by the rule a → a at step t+n. The interval between
these two spikes sent out to the environment by the system is (t + n) − t = n,
which is exactly the number stored in register 3 of M ′

u at the moment when the
computation of M ′

u halts.
From the above description, it is clear that the register machine M ′

u is correctly
simulated by system Π. Therefore, Theorem 1 holds.

4 Conclusions and Remarks

In this note, a new way is introduced for simulating register machines by SN P
systems, where a neuron works like “the finite set of states” in Turing machine.
By this new way, we can use less neurons to construct universal SN P systems.
Specifically, a universal system with extended rules (without delay) having 12
neurons is constructed.

A Note on Small Universal SN P Systems 475

In the universal SN P system Π constructed in Section 3, four neurons are
associated with 4 registers; one neuron is used to output the result of computation;
one neuron is used for all instructions of a register machine; 2 auxiliary neurons are
used to feed spikes at each step; 4 auxiliary neurons are used between the neuron
associated with all instructions and neurons associated with registers, which work
as a “sieve”. Can we remove these 4 auxiliary neurons to get smaller universal SN
P systems? One possible way of removing these auxiliary neurons is to use more
rules in the neuron associated with instructions realizing the function of “sieve”.

In this note, we only considered SN P systems with extended rules without
delay. Can we extend this way to the case of SN P systems with standard rules
(a little more neurons seems necessary), asynchronous SN P systems, or other
variants and modes of SN P systems?

The universal SN P system constructed in this note is already quite small. If we
start from universal register machines to construct universal SN P systems, then
it may be not easy to get significant improvement. Of course, it is still possible
to have smaller universal SN P systems, if we start construction from other small
universal computational devices.

Acknowledgements. The comments from three anonymous referees are greatly
acknowledged. The work was supported by National Natural Science Foundation
of China (Grant Nos. 60674106, 30870826, 60703047, and 60533010), Program for
New Century Excellent Talents in University (NCET-05-0612), Ph.D. Programs
Foundation of Ministry of Education of China (20060487014), Chenguang Pro-
gram of Wuhan (200750731262), HUST-SRF (2007Z015A), and Natural Science
Foundation of Hubei Province (2008CDB113 and 2008CDB180).

References

1. M. Ionescu, Gh. Păun and T. Yokomori, Spiking neural P systems, Fundamenta
Informaticae, 2006, 71(2–3): 279–308

2. I. Korec, Small universal register machines, Theoretical Computer Science, 1996, 168:
267–301

3. M. Minsky, Computation – Finite and Infinite Machines, Prentice Hall, New Jersey,
1967

4. A. Păun, Gh. Păun. Small universal spiking neural P systems, BioSystems, 2007,
90(1): 48–60

5. Gh. Păun, Membrane Computing – An Introduction, Springer-Verlag, Berlin, 2002
6. Gh. Păun, G. Rozenberg, A. Salomaa, eds., Handbook of Membrane Computing, Ox-

ford University Press, 2010
7. Y. Rogozhin, Small universal Turing machines, Theoretical Computer Science, 1996,

168: 215–240
8. G. Rozenberg, A. Salomaa, eds., Handbook of Formal Languages, 3 volumes. Springer-

Verlag, Berlin, 1997
9. X. Zhang, X. Zeng, L. Pan, Smaller universal spiking neural P systems, Fundamental

Informaticae, 2008, 87(1): 117–136
10. The P System Web Page: http://ppage.psystems.eu

